UMD: New ERL paper on aboveground carbon loss in DRC
…That methodology grew directly out of the forest cover monitoring work done for CARPE, i.e., the FACET method. This paper published today relies directly on the FACET product….
A Tyukavina, S V Stehman, P V Potapov, S A Turubanova, A Baccini, S J Goetz, N T Laporte, R A Houghton and M C Hansen (2013) : National-scale estimation of gross forest aboveground carbon loss: a case study of the Democratic Republic of the Congo
Recent advances in remote sensing enable the mapping and monitoring of carbon stocks without relying on extensive in situ measurements. The Democratic Republic of the Congo (DRC) is among the countries where national forest inventories (NFI) are either non-existent or out of date. Here we demonstrate a method for estimating national-scale gross forest aboveground carbon (AGC) loss and associated uncertainties using remotely sensed-derived forest cover loss and biomass carbon density data. Lidar data were used as a surrogate for NFI plot measurements to estimate carbon stocks and AGC loss based on forest type and activity data derived using time-series multispectral imagery. Specifically, DRC forest type and loss from the FACET (Forˆets d’Afrique Centrale Evalu´ees par T´el´ed´etection) product, created using Landsat data, were related to carbon data derived from the Geoscience Laser Altimeter System (GLAS). Validation data for FACET forest area loss were created at a 30-m spatial resolution and compared to the 60-m spatial resolution FACET map. We produced two gross AGC loss estimates for the DRC for the last decade (2000–2010): a map-scale estimate… FInd more...
M. C. Hansen (2013) : High-Resolution Global Maps of 21st-Century Forest Cover Change
Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil’s well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change…. Find more...
CBFP News
WWF: Rainforest deforestation more than doubled under cover of coronavirus -DW
Read more … WWF: Rainforest deforestation more than doubled under cover of coronavirus -DW
Nouabalé-Ndoki National Park Monthly update April 2020
Read more … Nouabalé-Ndoki National Park Monthly update April 2020
Resources and follow-up from the virtual FAO-EcoAgriculture Partners Roundtable
Read more … Resources and follow-up from the virtual FAO-EcoAgriculture Partners Roundtable
ATIBT -CBFP: Private Sector mobilized around the CBFP Facilitator of the Federal Republic of Germany
2024
There are no news items for this period.