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A B S T R A C T

The estimation and monitoring of the huge amount of carbon contained in tropical forests, and specifically in the
above-ground biomass (AGB) of trees, is needed for the successful implementation of climate change mitigation
strategies. Its accuracy depends on the availability of reliable allometric equations to convert forest inventory data
into AGB estimates. In this study, we tested whether central African forests are really different from other tropical
forests with respect to biomass allometry, and further examined the regional variation in tropical tree allometry
across the Congo basin forests. Following the same standardized protocol, trees were destructively sampled for
AGB in six sites representative of terra firme forests. We fitted regional and local allometric models, including tree
diameter, wood specific gravity, tree height, and crown radius in the AGB predictors. We also evaluated the AGB
predictions at the tree level across the six sites of our new models and of existing allometric models, including the
pantropical equations developed by Chave et al. (2014, 2005) and the local equations developed by Ngomanda
et al. (2014) in Gabon. With a total of 845 tropical trees belonging to 55 African species and covering a large range
of diameters (up to 200 cm), the original data presented here can be considered as the largest ever destructive
sampling for a tropical region. Regional allometric models were established and including tree height and crown
radius had a small but significant effect on AGB predictions. In contrast to our expectations, tree height and crown
radius did not explain much between-site variation. Examining the performance of general models (pantropical or
regional) versus local models (site-specific), we found little advantage of using local equations. Earlier pantropical
equations developed for moist forests were found to provide reasonable predictions of tree AGB in most sites,
though the wettest sites, i.e., evergreen forests in Equatorial Guinea and, to a lesser extent in Gabon, tended to
show a wet forest allometry. For the Congo basin forests, except in Equatorial Guinea where local models might be
preferred, we recommend using our regional models, and otherwise the most recent pantropical models, that were
validated here. These results constitute a critical step for the estimation and monitoring of biomass/carbon stocks
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contained in the second largest contiguous block of tropical forests worldwide, and the successful implementation
of climate change mitigation strategies, such as REDD+.

1. Introduction

The increase in greenhouse gas concentrations has, had, and will
have, strong impacts on the global climate (IPCC fifth report on climate
change, Pachauri et al., 2014). Deforestation and forest degradation
was a major source of greenhouse emissions in the 1990s contributing
to ∼20% of total greenhouse gas emissions (Malhi and Grace, 2000)
but decreasing in the 2000s to 10–12% of total emissions (Van der Werf
et al., 2009) due to the acceleration of fossil energy emissions. Forest
losses are still widely reported and deforestation has been estimated to
129million of hectares between 1990 and 2015, mostly in the tropics
(FAO, 2015; Keenan et al., 2015). To limit the emissions due to de-
forestation and forest degradation, but also to conserve tropical forest
biodiversity and ecosystem services, the mechanism for the Reduction
of the Emissions from Deforestation and Degradation (REDD+) is
under negotiation. Though the implementation of REDD+ is still being
discussed, specifically the financial incentives, strong efforts have been
made by the scientific community to standardise methods for mon-
itoring biomass/carbon stocks in tropical forests, a key component for
making REDD+ a reality (Gibbs et al., 2007).

Forest biomass/carbon stocks are not directly measured in the field,
but estimated following a three-step approach (Chave et al., 2004; Clark
and Kellner, 2012). (1) The estimation of individual tree biomass is
obtained by converting forest inventory data using an allometric
equation. (2) The estimation of plot biomass is then computed from the
sum of individual tree biomasses, for all trees inventoried in the plot. At
the tree or plot levels, carbon stocks are deduced from biomass esti-
mates by multiplying by carbon content (Thomas and Martin, 2012).
(3) For the mapping of forest biomass/carbon stocks at a larger scale,
remote-sensing data are used to expand the plot-level estimates over
larger areas.

Allometry is the relationship between a tree measurement (typically
its biomass) and another measurement, more easily measurable in the
field, i.e., tree diameter and/or height (Picard et al., 2012). An allo-
metric equation is a mathematical expression which formalizes this
relationship in a quantitative way. In forest sciences, allometric re-
lationships have been classically established to estimate the stem vo-
lume or the tree biomass (see Henry et al., 2011 for a catalogue of
available equations for sub-Saharan Africa). While volume estimation is
of extreme importance for forest management and timber commercia-
lization, a renewed interest in biomass estimation has been observed for
approximately one decade (Zianis and Mencuccini, 2004). The im-
plementation of climate change mitigation strategies, and specifically
REDD+, will need accurate and repeatable estimations of forest bio-
mass/carbons stocks (Gibbs et al., 2007) and the choice of an appro-
priate allometric model has been demonstrated to be a critical step
(Chave et al., 2004; Molto et al., 2013).

The first tree allometry work for species-rich and structurally
complex tropical rainforests goes back to 1989 by Brown et al. (1989).
In this seminal paper, pantropical multi-species allometric equations
predicting AGB of individual trees as a function of diameter at breast
height, total tree height, and wood specific gravity (the oven-dry mass
of a wood sample divided by its green volume) were proposed for the
first time, and different equations were provided according to the forest
type. Chambers et al. (2001) then developed an unbiased model for the
relationship between tree diameter and biomass from 315 trees har-
vested in the central Amazon, and showed major differences for large
trees when compared to existing models. Chave et al. (2005) updated
the pantropical multi-species allometric equations and proposed allo-
metric equations for wet, moist, dry and mangrove forests. The most

important predictors of tree AGB were, in order of importance, tree
diameter, wood specific gravity and tree height, and the inclusion of
tree height in the model predictors obviated the differences between
forest types. The pantropical models of Chave et al. (2005) were used in
a variety of contexts (cited more than 2050 times on 24th of April 2018)
though their application in tropical Africa was questioned because the
calibration dataset, though impressive (with 2410 trees with a dia-
meter≥ 5 cm destructively sampled, from 27 study sites), did not in-
clude any data from Africa. The predictions of the pantropical model for
moist forests was, however, found unbiased and accurate in Cameroon
(Fayolle et al., 2013) but showed 40% overestimation in Gabon
(Ngomanda et al., 2014), though in the latter site the wet forest
equation was appropriate. The selection of the appropriate allometric
model among a set of existing models is thus not straightforward, as
also shown in Colombia (Alvarez et al., 2012). The pantropical allo-
metric equations have been recently revised (Chave et al., 2014), in-
cluding this time destructive data from Africa in the calibration dataset
(4004 trees≥ 5 cm destructively sampled, from 38 study sites). The
general model (Eq. (4) from Chave et al., 2014) solely depending on a
synthetic variable composed of tree diameter (D in cm), total height (H,
in m), and species wood specific gravity (WSG, in g cm−3), is relatively
simple in its form:

= × × ×AGB 0.0673 (WSG D H)est
2 0.976

When height data are not available, a model including an environ-
mental stress variable (E) was proposed (Eq. (7) from Chave et al.,
2014):

= − − × + × + ×

− ×

AGB exp[ 1.803 0.976 E 0.976 ln(WSG) 2.673 ln(D)

0.299 [ln(D)] ]
est

2

The E variable models the H-D relationship, and it is clearly imperfect
locally as shown in Cameroon (Fayolle et al., 2016), and already ac-
knowledged in Chave et al. (2014).

Given the information provided by the multi-site analyses of pub-
lished data and the proposed pantropical equations (Brown et al., 1989;
Chave et al., 2014, 2005), improving our understanding of tropical tree
allometry will require new data in under-sampled areas such as the
Congo basin forests (Verbeeck et al., 2011). This newly collected data
should follow a comparable protocol and an appropriate sampling: at
least 100 trees covering a large range of diameter, as suggested by
Chave et al. (2004), and including extremely large trees given their
contribution to plot-level AGB (Slik et al., 2013) and their strong
variability (Chambers et al., 2001; Picard et al., 2012). The destructive
sampling should target species with contrasted wood specific gravity,
which is a key functional trait (Chave et al., 2009) and the second most
important predictors of tree AGB (Chave et al., 2014, 2005). Other tree
dimensions have been demonstrated to additionally improve the per-
formance of multi-specific allometric models, specifically tree height
(Feldpausch et al., 2012) and crown characteristics (Goodman et al.,
2013; Ploton et al., 2016).

In this study, we tested whether central African forests are really
different from other tropical forests with respect to biomass allometry,
and examined the regional variation in tree allometry across the Congo
basin forests. Despite the strong between-site variation in tree allometry
reported by Fayolle et al. (2013) in Cameroon and Ngomanda et al.
(2014) in Gabon, only little information is available for the Congo basin
forests (Loubota Panzou et al., 2016), especially when considering the
appropriate sampling needed for an allometric model. A dataset of
destructive AGB measurements (n= 845 trees, over a large range of
diameters, i.e., 10–208 cm) was assembled to provide a basis for the
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validation of existing models and to develop allometric models for the
Congo basin forests, thanks to the support of the Global Environmental
Fund dedicated to the regional REDD+ project (PREREDD+). Fol-
lowing the same standardized protocol, destructive AGB data were
collected in six sites representative of terra firme forests in the Congo
basin. We first ask how the measured tree dimensions co-vary in the
dataset and then assessed the performance of allometric models, in-
cluding new regional and local models, and previously published ones.
According to the previous findings, and mostly from Chave et al. (2014,
2005), we hypothesized that, after tree diameter, (i) wood specific
gravity is an important AGB predictor, and explains most of between-
species variation, (ii) tree height is also an important AGB predictor,
and explains most between-site variation. The importance of crown
characteristics on tree AGB recently evidenced by Goodman et al.
(2013) and Ploton et al. (2016) was additionally examined. Because the
selection of the appropriate allometric model among a set of existing
models is not straightforward (e.g. Alvarez et al., 2012; Ngomanda
et al., 2014), we also evaluated a set of existing models, including the
most recent pantropical equations, and addressed a more applied re-
search question for future biomass/carbon stocks estimation, asking
whether general or local models should be preferred for the estimation
of tree AGB.

2. Material and methods

2.1. Study sites

A total of six study sites, from evergreen to semi-deciduous lowland
terra firme forests, were selected for the destructive sampling of tree
AGB (Table 1). The evergreen forests sampled encompass coastal (in
Equatorial Guinea) and inland (in northern Gabon) forests. Semi-de-
ciduous forests were sampled in eastern Cameroon and northern Re-
public of Congo. Transition forests between the evergreen and semi-
deciduous types were sampled in Central African Republic (CAR) and in
Democratic Republic of Congo (DRC), with contrasting determinants,
including substrate and soils in CAR (Fayolle et al., 2014), and climate
and continentality in DRC. Monodominant Gilbertiodendron stands were
also sampled in Congo and DRC to test for a specific allometry. Given

the forest types sampled and the spatial extent covered, these sites were
representative of the terra firme forests of the Congo basin (White,
1983). The country name will hereafter be used to refer to the site with
mention of the forest type only when relevant.

The variation in environmental conditions across the Congo basin
forests is relatively well represented by the six study sites, with mean
annual rainfall varying from 1400 in the driest site (Cameroun, semi-
deciduous forest) up to 2700mm in the wettest site (Equatorial Guinea,
coastal evergreen forest). Most sites, except Equatorial Guinea, were
above 400m a.s.l., and the semi-deciduous forest in Cameroon showed
the highest altitude (> 600m). The measure of environmental stress
developed by Chave et al. (2014), compounding indices of temperature
seasonality, drought intensity and precipitation seasonality varies from
−0.15 for the evergreen forests (in Equatorial Guinea and Gabon) to
∼0 for the other sites further inland. The variation across the six study
sites was, however, restricted, compared with the pantropical variation,
i.e., between −0.2 and 1, and which encompassed wet, moist and dry
forests, and woodlands.

2.2. Species and tree sampling

The development of allometric equations requires a large sampling
effort in terms of individuals (at least 100 trees, Chave et al., 2004),
diameters and species, but also rigorous measurements of wood specific
gravity (Woodcock and Shier, 2002). The unpublished destructive data
presented here followed a standardized protocol adapted from Fayolle
et al. (2013) and Ngomanda et al. (2014), and suitable for extremely
large trees. In each of the six study sites, a partnership was established
with a logging company (Table 1) for both logistic support and com-
pliance with national forest laws. Based on forest inventory data (spe-
cifically management inventories) but also on field expertise, a set of 15
species, locally abundant and characteristic of the forest type, but also
with contrasting wood specific gravities, was selected in each site. At
this stage, average values for tropical Africa were computed at the
species or genus level (Table 2) from the global database (Chave et al.,
2009; Zanne et al., 2009). In each site, we aimed to sample between
120 and 130 trees belonging to the 15 targeted species and covering a
large diameter range, to fulfil the recommendations of Chave et al.

Table 1
Characteristics of the study sites, including country and name of the logging company, geographical coordinates, forest type, environmental conditions, specifically:
mean annual temperature (MAT), mean annual rainfall (MAR), altitude and E-value sensu Chave et al. (2014), and sampling effort in terms of the number of trees
(ntree) and species (nspe), and diameter range (D in cm). Sites are ordered from West to East.

Site (logging company) Coordinates Forest type Environment Sampling

1. EqG
Equatorial Guinea (COMALI)

Lon=9.537°
Lat= 1.316°

Coastal evergreen forest MAT=25.2 °C
MAR=2699mm
alt= 52m
E=−0.1509

ntree= 109
nspe= 14
D [11–172]

2. Gab
Gabon (Rougier Haut-Abanga)

Lon=11.131°
Lat= 0.505°

Evergreen forest inland MAT=23.7 °C
MAR=1905mm
alt= 496m
E=−0.1203

ntree= 178
nspe= 16
D [12.3–169.3]

3. Cam
Cameroon (GRUMCAM)

Lon=14.809°
Lat= 3.952°

Semi-deciduous forest MAT=23.6 °C
MAR=1396mm
alt= 663m
E=−0.0131

ntree= 132
nspe= 15
D [11.5–180]

4. CAR
Central African Republic (SEFCA)

Lon=16.896°
Lat= 3.919°

Transition forest between the evergreen and semi-deciduous types on sandstone
plateau

MAT=24.0 °C
MAR=1570mm
alt= 565m
E=−0.0023

ntree= 143
nspe= 16
D [10.5–173]

5. Cgo
Republic of Congo (CIB-OLAM)

Lon=16.970°
Lat= 2.484°

Semi-deciduous forest MAT=24.4 °C
MAR=1704mm
alt= 442m
E=−0.0314

ntree= 141
nspe= 16
D [10.3–208]

6. DRC
Democratic Republic of Congo (CFT)

Lon=25.206°
Lat= 0.348°

Transition forest between the evergreen and semi-deciduous types MAT=25.2 °C
MAR=1772mm
alt= 423m
E=−0.0355

ntree= 142
nspe= 16
D [11.7–160.5]
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Table 2
Characteristics of the species destructively sampled, including scientific and commercial names, number (n) of trees sampled, range of diameters (D in cm) and mean
wood specific gravity (in g cm−3) from our local measurements (WSGL), and from the global database (WSGG), are given for each sampled species. The taxonomic
level (Lev., species or genus) and the number of individuals (nG) used to compute WSGG are also given. Species are ordered by botanical family.

Genus Species Com. name n D WSGL WSGG Lev. nG

Anisophylleaceae
Poga oleosa Ovoga 7 [24–130] 0.421 0.393 sp 9

Annonaceae
Annickia affinis Moambe jaune 5 [11.3–51] 0.449 0.468 ge 2
Anonidium mannii Ebom 13 [18.7–71.8] 0.329 0.291 sp 2
Greenwayodendron suaveolens Otungui 13 [14.5–51] 0.622 0.695 sp 1
Xylopia aethiopica Okala 26 [15–76.7] 0.529 0.442 sp 2

Apocynaceae
Alstonia boonei Emien 9 [16–128.75] 0.374 0.321 sp 5

Burseraceae
Aucoumea klaineana Okoumé 36 [14–169.3] 0.384 0.378 sp 26
Canarium schweinfurthii Aiélé 8 [20.8–160.5] 0.411 0.409 sp 16
Santiria trimera Ebo (Ebap) 9 [12.3–52.5] 0.548 0.546 sp 3

Cannabaceae
Celtis adolfi-friderici Diana 9 [17.7–70.5] 0.594 0.581 sp 3

Combretaceae
Terminalia superba Fraké 28 [13–113.5] 0.47 0.459 sp 57

Euphorbiaceae
Macaranga spp 12 [14.8–53.5] 0.347 0.380 ge 3
Plagiostyles africana Essoula 12 [17.1–51.5] 0.575 0.741 sp 3
Ricinodendron heudelotii Essessang 23 [14.5–126] 0.269 0.211 sp 5

Fabaceae
Baphia spp Baphia 6 [14.5–67] 0.801 0.772 ge 2
Brachystegia laurentii Bomanga 9 [11.7–146.5] 0.438 0.500 sp 15
Calpocalyx heitzii Miama 7 [18–88] 0.684 0.727 sp 15
Cylicodiscus gabunensis Okan 19 [13.5–159.5] 0.749 0.790 sp 18
Cynometra hankei 12 [17.8–112] 0.693 0.841 sp 2
Dialium pachyphyllum Omvgong 13 [16–129] 0.74 0.923 sp 2
Erythrophleum ivorense Tali 10 [17.5–172] 0.704 0.774 sp 19
Erythrophleum suaveolens Tali Yaoundé 22 [16.6–120.5] 0.74 0.873 sp 5
Gilbertiodendron dewevrei Limbali 39 [11.7–158] 0.668 0.707 sp 4
Julbernardia pellegriniana Beli 3 [80–108.6] 0.698 0.675 sp 9
Pentaclethra macrophylla Mubala 13 [11.5–112] 0.744 0.841 sp 9
Pericopsis elata Afrormosia 9 [14.8–158.5] 0.649 0.639 sp 12
Prioria balsamifera Agba 1 [133.3–133.3] 0.442 0.407 sp 9
Prioria oxyphylla Tchitola 10 [14.8–110] 0.534 0.570 sp 4
Pterocarpus soyauxii Padouk 51 [11.6–144] 0.594 0.658 sp 14
Scorodophloeus zenkeri Divida 7 [15.8–97.5] 0.66 0.724 sp 4

Irvingiaceae
Desbordesia glaucescens Alep 12 [14.5–170] 0.807 0.915 sp 7
Irvingia grandifolia Olen 8 [10.3–134] 0.756 0.801 sp 4
Klainedoxa gabonensis Eveuss 5 [52–102] 0.781 0.926 sp 12

Lecythidaceae
Petersianthus macrocarpus Essia (Abalé) 50 [12.5–115] 0.588 0.677 sp 10

Malvaceae
Duboscia macrocarpa Akak 8 [26.5–120.3] 0.55
Eribroma oblongum Eyong 9 [17.8–100.8] 0.547 0.638 sp 11
Mansonia altissima Bété 7 [19–74.56] 0.519 0.564 sp 24
Triplochiton scleroxylon Ayous 21 [13.5–208] 0.378 0.335 sp 24

Meliaceae
Entandrophragma candollei Kossipo 9 [15–173] 0.547 0.574 sp 10
Entandrophragma cylindricum Sapelli 41 [15.2–169.42] 0.551 0.572 sp 16
Guarea cedrata Bossé clair 8 [16.5–70.5] 0.562 0.527 ge 1
Khaya anthotheca Acajou 8 [12.1–113] 0.52 0.491 sp 11
Lovoa trichilioides Dibétou 6 [45.5–107.6] 0.599 0.455 sp 19

Moraceae
Milicia excelsa Iroko 21 [18.5–116] 0.516 0.575 sp 24

Myristicaceae
Pycnanthus angolensis Ilomba 59 [13–130] 0.41 0.409 sp 20
Scyphocephalium mannii Sorro 12 [36.8–109.8] 0.446 0.507 sp 9
Staudtia kamerunensis Niové 44 [12.6–119.3] 0.675 0.797 sp 17

Ochnaceae
Lophira alata Azobé 35 [11–152] 0.833 0.897 sp 30

(continued on next page)
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(2004). Trees, sought to be representative of the sampled forest, were
selected during a prospecting phase. Specific authorizations were ob-
tained from national authorities for the destructive sampling of trees of
timber species with a diameter below the minimum cutting diameter
limit. Finally, a total of 55 species were sampled belonging to 49 genera
and 17 families (Table 2) including the Fabaceae (specifically the
Caesalpinioideae subfamily) characteristic of the evergreen forests, and
the Malvaceae, Sapotaceae and Meliaceae families, characteristic of the
semi-deciduous forests (White, 1983).

2.3. Biomass measurements

Prior to felling, tree location was recorded with a global positioning
system (GPS) and dendrometric measurements were performed on
standing trees. Tree diameter was measured with a tape at breast height
or 30 cm above the stem deformations. Total tree height was measured
with a VERTEX IV rangefinder from two different positions located at a
minimum distance of tree height (Larjavaara and Muller-Landau,
2013). Crown was defined as everything above the first major branch
and four different measurements of crown radius were performed ac-
cording to cardinal points (Rondeux, 1999).

After felling, the tree length (including the bole and crown) and
stump height were measured with a tape. The felled trees were then
divided into compartments, i.e., the stump, the bole, the large branches
(with a diameter≥ 20 cm), the medium branches (between 20 and
5 cm) and the small branches (< 5 cm), and a last compartment com-
posed of twigs, leaves, and flowers and fruits, when present. When
possible, tree compartments were directly weighed in the field, except
the stump of all trees, and the stem of commercial trees, which were
cubed and later converted into dry biomass (Fayolle et al., 2013). The
stem volume of commercial trees was estimated from consecutive
measurements of 1–2m logs. The stump basal area was computed from
georeferenced photographs, on which the stump edge was manually
digitised in QGIS (version 2.8). The stump volume was estimated from
the stump area and height. Several samples were collected on each
compartment for laboratory measurements. Woody samples (including
bark) corresponded to disks or disk portions to respect radial variation.
Two opposite disk portions were sampled on the stump, and at both end
of the bole, and three disks were sampled in the branches (one in the
large, one in the medium and one in the small branches). Three random
samples were collected on the last compartment composed of twigs,
leaves, and flowers and fruits.

In the laboratory, the green volume of woody samples, and the fresh
mass and oven-dried mass of all samples, were measured in order to
compute the wood specific gravity (ratio of the dry mass over the green
volume) and the dry matter content (ratio of the dry mass over the fresh
mass). The water displacement method was used for the green volume
measurements (Rondeux, 1999). Dry mass of all samples was obtained
after several days drying at 105 °C until constant mass, i.e., < 1% dif-
ference between two measurements at 6 h interval.

2.4. Allometric modelling

We first used the destructively sampled trees from six sites across
the Congo basin forests as a calibration dataset to develop regional (and

local) allometric equations. Tree diameter and height, and species wood
specific gravity, have long been recognized as important predictors of
tree AGB and the pantropical allometric model developed by Chave
et al. (2014) relied on the general equation:

= × × ×AGB a WSG D Hb c d (1)

Once the total tree height (H, in m) is known, we assumed that the site
effect becomes negligible. When the height, H, is unknown, it is re-
placed by a function of the diameter (D, in cm) and the environmental
stress variable (E, dimensionless). It was also assumed that the model
has a multiplicative error distributed according to a log-normal dis-
tribution. In this study, we followed the same modelling strategy that (i)
generalizes all biomass models built upon the mechanistic mass of a
cylinder (Molto et al., 2013), (ii) respects the proportionality principle
between the total biomass of a plant and its size (West et al., 1999,
1997) and, (iii) has been demonstrated to be very efficient regarding
the recent studies (e.g. Goodman et al., 2013; Ngomanda et al., 2014).
In addition, Eq. (1) becomes a simple linear model after log-transfor-
mation (Eq. (2) which is recommended for allometric modelling
(Kerkhoff and Enquist, 2009):

= + × + × + ×log(AGB) log(a) b log(WSG) c log(D) d log(H) (2)

The log-transformation, however, introduces a bias when back-trans-
forming the data (Sprugel, 1983) and the bias was corrected using a
correction factor, CF= exp(RSE2/2), where RSE is the residual stan-
dard error.

Additional models derived from this general modelling approach
were also examined, with fixed coefficients, with and without total tree
height in the predictors, substituting local height-diameter allometry by
the environmental stress of the site (Chave et al., 2014), and including
the crown radius as an AGB predictor (Goodman et al., 2013). Here, we
used the mean wood specific gravity of the stem samples at the tree
level. Missing values due to laboratory problems were replaced by
species average (n=13 trees belonging to 8 species). For total tree
height, we used the mean of the two non-destructive measurements,
and crown radius corresponded to the mean of the four measurements.
To evaluate the relative importance of crown radius, in comparison
with the more classical AGB predictors (i.e., tree diameter, wood spe-
cific gravity and total tree height), we computed the proportion of type
III sum of squares explained by the variable in the most complete
model:

= + × + × + ×

+ ×

log(AGB) log(a) b log(WSG) c log(D) d log(H)

e log(CR) (3)

2.5. Evaluating new and existing models

To assess the performance of the new models tested we used the
variance explained (R2), Akaike and Bayesian Information Criteria (AIC
and BIC, respectively), and the RMSE computed on back-transformed
AGB estimates (AGBest, including the correction factor) and AGB ob-
servations (AGBobs) as follows.

Table 2 (continued)

Genus Species Com. name n D WSGL WSGG Lev. nG

Olacaceae
Ongokea gore Angueuk 7 [36.1–72.5] 0.692 0.749 sp 10
Strombosia grandifolia Booko 8 [14.5–54.7] 0.647 0.825 sp 6

Sapotaceae
Autranella congolensis Mukulungu 12 [10.5–200] 0.732 0.777 sp 8
Manilkara mabokeënsis 14 [14.5–106] 0.738 0.879 ge 4
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est i obs i
1
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2
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The distribution of model residuals was examined visually, and the
departure from a normal distribution was tested according to the
Anderson-Darling normality test. A Box-Cox transformation was also
applied on the residuals.

We then evaluated the performance of regional allometric models at
the site level. Because general models are calibrated on large datasets,
the model coefficients are expected to be more precisely estimated, but
general models can be locally biased. We computed the performance of
the regional models for each site separately, in terms of RMSE (in kg)
and mean relative bias (in %).

∑= −
=

bias
n

AGB AGB AGB(%) 1 ( )/
i

n

est i obs i obs i
1

, , ,
(5)

Bias significance was also tested using t-tests.
To get a broader view of the regional variation in tree allometry, the

performance of local models was also tested in all other sites, as a ca-
libration validation procedure, in order to identify which site-specific
model is valid where. In the pairwise validation, the allometric model
was calibrated in one site (calibration dataset) and then applied to all
other sites independently (validation dataset). For this approach, two
models were retained, a model including WSG, D, and H in the AGB
predictors derived from the most recent pantropical model (Chave
et al., 2014), and a model only including WSG and D in the AGB pre-
dictors that was close to the earlier pantropical models (Chave et al.,
2005).

Finally, we also used the trees destructively sampled in six sites
across the Congo basin forests as a validation dataset to evaluate ex-
isting models. We specifically tested the predictions of the general
pantropical models developed by Chave et al. (2014, 2005) and of the
local models established by Ngomanda et al. (2014) in the Zadié site in
Gabon. We did not test the predictions of the model developed by
Fayolle et al. (2013) in the Mindourou site in Cameroon, because this
model was found to be quite close to the moist forest model of Chave
et al. (2005), and of the other local models established on a restricted

dataset (e.g. Djomo et al., 2010 in Cameroon; Ebuy et al., 2011 in DRC).
To evaluate AGB predictions of existing models, we used several sta-
tistical criteria. We computed the root mean square error (RMSE in kg)
between estimations and observations and we tested for the presence of
a significant bias using t-tests on the relative bias (in %). We also fitted
a linear model between the individual error (estimation - observation)
and diameter at the site level, and examined the value and significance
of coefficients. The same analyses were replicated for large trees, using
a diameter threshold of 70 cm according to Slik et al. (2013).

The R environment was used for the whole data analyses and
modelling (R Development Core Team, 2017).

3. Results

3.1. Covariations between tree dimensions and AGB

We first asked how the measured tree dimensions co-vary in the
combined dataset including 845 trees from 55 species (14–16 in each
site), among which wood specific gravity varied between 0.269 g cm−3

for Ricinodendron heudelotii (Euphorbiaceae) and 0.833 g cm−3 for
Lophira alata (Ochnaceae), with a mean of 0.582 g cm−3 across species.
The most massive tree was a Autranella congolensis (Sapotaceae) of
66Mg sampled in northern Congo, and was therefore slighter than the
heaviest tropical tree ever weighed (76Mg in southwestern Amazonia,
Goodman et al., 2012) and in central Africa (72Mg in southeastern
Cameroon, Fayolle et al., 2013). However, it has to be noted that at-
tention was paid to sampling extremely large trees in all sites (Fig. 1)
confirming the great interest of using this dataset for the calibration of
new allometric models and for the evaluation of existing equations. For
instance, among the 845 trees sampled, a total of 225 trees had a dia-
meter> 70 cm, i.e., large trees according to Slik et al. (2013), and 132
trees showed AGB > 10Mg, i.e., large trees according to Ploton et al.
(2016). In comparison, among the 4004 trees of the pantropical dataset
of Chave et al. (2014), a total of 252 trees had a diameter> 70 cm and
108 trees showed AGB > 10Mg. Obviously, large trees were tall and
had large crowns, and power-law relationships provided good fit to the
data for both height-diameter and crown-diameter allometries (Fig. S1)
with significant between-site variation (Table S1). The highest tree, a

Fig. 1. Trees destructively sampled in six sites across the Congo basin forests (in black) overlaying the 4004 trees of the pantropical dataset assembled by Chave et al.
(2014, in grey). Circles represent the aboveground biomass (AGB, in kg) of all sampled trees plotted according to diameter (D in cm) with size proportional to wood
specific gravity (in g cm−3). The dashed lines corresponds to the diameter and biomass thresholds for large trees according to Slik et al. (2013, D > 70 cm) and to
Ploton et al. (2016, AGB > 10Mg). Sites are ordered from West to East.
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Terminalia superba (Combretaceae) of 67 m height was sampled in Ca-
meroon (semi-deciduous forest). The tree with the largest crown, a
Brachystegia laurentii (Fabaceae) with a mean crown radius of 22m, for
only 31m height, was sampled in DRC (transition forest).

We then examined how the measured tree dimensions relate to AGB
in the combined dataset. We first fitted the general allometric model
including tree diameter, mean stem wood specific gravity, and total tree
height in the AGB predictors, and two parameters in the model, i.e., an
intercept and a single scaling coefficient for the term WSG×D2×H
(model 1, Table 3). We found that this model, relatively simple in its
form, provided a relatively good fit to the data. Including specific
scaling coefficients for each predictor provided lowest values of AIC,
BIC, among the tested models including these three predictors (model 3,
Table 3), though such models do not take into account the co-variation
between H and D. However, constraining the covariation of D and H
through the use of the compound variable D2×H (models 5–7) pro-
vided higher AIC and BIC. Fitting a set of derivative models, we found
that including tree height as a predictor strongly improved AGB esti-
mates and that models with unconstrained coefficients generally pro-
vided better fits, though estimated coefficients were close to 1 for wood
specific gravity and close to 2 for tree diameter (Table 3). The RMSE
comparing back-transformed AGB estimates to observations confirmed
the good performance of model 3. The RMSE was, however, the lowest
for the derivative model including a scaling coefficient constrained to 2
for tree diameter (model 4). Following the approach developed by
Chave et al. (2014), we further examined whether tree height could be
advantageously replaced by the environmental stress variable fitting
the same relatively complex model (model 13). Including the environ-
mental stress did not improve the model, since the AIC and BIC values
remained higher than previously obtained. Extending the same mod-
elling approach and including crown radius in the predictors, we found
that crown size significantly improved AGB estimates (Table 3) redu-
cing model AIC, BIC and RMSE. Substituting total tree height by crown
size in the full model showed that crown radius was less effective than
total tree height to estimate AGB (model 16 indeed showed higher AIC,
BIC and RMSE values than model 3). Computing type III sum of squares
of the full model including tree diameter, wood specific gravity, total
tree height and crown radius, and with unconstrained coefficients
(model 14), further confirmed the more limited role of crown radius
(0.87%, proportion of type III sum of squares explained), and tree
height (2.05%), with respect to wood specific gravity (15.5%) and
diameter (65.5%) to explain AGB variation. However, despite the only
marginal variation explained by crown radius, the model including
crown radius was significantly better than the model not including
crown radius among the AGB predictors (P < 0.001, likelihood ratio
tests). For all tested models, the residual distribution generally departed
from a normal distribution according to the Anderson-Darling nor-
mality test but the graphical analysis did not reveal any particular
structure. Residuals were thus considered acceptable, which was con-
firmed by the Box-Cox transformation (scaling coefficients close to 1).

3.2. Evaluation of model performance at the tree level across sites

We then assessed the performance of allometric models, including
the new regional models fitted on the combined dataset, and previously
published ones, at the tree level, across all sites. We first examined for
each site separately, the performance of all regional models (Table 4)
and we found, surprisingly, that including tree height in the predictors
did not necessarily improve AGB estimates, since site-level RMSE and
bias were comparable between model 8–12 (only including tree dia-
meter and wood specific gravity in the predictors) and model 1–7 (also
including tree height). The sites in Cameroon, Congo, and to a lesser

extent in CAR showed an intermediate allometry, and regional models
provided unbiased AGB estimates, while the DRC site and the sites in
Gabon and Equatorial Guinea showed contrasted biomass allometry,
and significantly biased AGB estimates.

To further examine the regional variation in biomass allometry
across the Congo basin forests, we evaluated the performance of all
local models tested in all other sites, in a pairwise validation procedure.
We restricted the analysis to two model forms that showed a good
performance for regional models (models 3 and 12, Table 3). We found
a highly specific allometry in Equatorial Guinea (Table 5) since using
the local models fitted in Equatorial Guinea to estimate tree AGB in any
of the other sites across the Congo basin forests lead to high site-level
RMSE values and strong negative bias. Conversely testing all other local
models in Equatorial Guinea also showed high site-level RMSE values
and strong positive biases that tended to increase with the distance
from East to West. In contrast, local models fitted and tested in the five
other sites seemed to provide reliable AGB estimates in the other sites,
with, however, a tendency for greater allometric differences (higher
site-level RMSE) between the most distant sites, e.g. Gabon and DRC.

The same results were found for the different models tested, with,
however, less difference reported with model 12 (not including tree
height in the AGB predictors) contrary to our expectation that total tree
height captures most between-site variation in tree allometry. Again,
including tree height in the predictors did not necessarily improve AGB
estimates, since site-level RMSE of local model 12 was not system-
atically higher or more biased than that of local model 3. As expected,
site-level RMSE (in kg) and bias (in %) of the regional models both
tended to be more important (Table 4) than that of local models of the
same form (Table 5).

Finally, to test whether central African tropical forests are really
different from other tropical forests with respect to biomass allometry
we tested the performance of pantropical models, which tended to
provide significantly biased AGB estimates at the tree level for most
sites (Fig. 2). The performance of pantropical models was, however,
found only slightly lower than that of regional models, with comparable
site-level RMSE, but larger and highly significant bias for pantropical
models (Fig. 2 and Table S2) and smaller but significant bias for re-
gional models (Table 4). The moist forest equations of Chave et al.
(2005, Ch05mD and Ch05mDH) significantly overestimated tree AGB
in Equatorial Guinea (23.3 and 26.1%), in Gabon (13.4 and 16.4%), in
Cameroon (19.9 and 22.1%) and CAR (14.4 and 9.3%), but provided
unbiased estimates in Congo, and variable results in DRC, with sig-
nificant AGB overestimation for the model not including height
(Ch05mD, 10.4%), and significant underestimation for the model in-
cluding height (Ch05mDH, −9.8%). The wet forest equations (Ch05wD
and Ch05wDH) and the local equations developed by Ngomanda et al.
(2014, Ng14D and Ng14DH) in Gabon provided reliable estimates in
Equatorial Guinea, and to a lesser extent in the new site sampled in
Gabon, but significantly underestimated tree AGB in all other sites (up
to−28.9%). These results argue for a wet forest allometry in Equatorial
Guinea, a moist forest allometry in Cameroon, Congo, and to a lesser
extent in CAR and DRC, and an intermediate allometry in Gabon. The
most recent pantropical equations of Chave et al. (2014, Ch14DH and
Ch14DE) provided almost unbiased AGB estimates in Cameroon (25.2
and 5.6%), Congo (7.5 and −4.2%), CAR (12.6 and 2.3%) and DRC
(−6.7 and −0.6%). In the wettest forests of Equatorial Guinea (28.9
and 23.7%) and Gabon (18.8 and 9.9%), both equations significantly
overestimated tree AGB, confirming the specificity of these sites (ten-
dency towards a wet forest allometry). Overall, and in contrast with our
expectations, models including tree height did not consistently improve
AGB estimates. This can be easily observed when comparing pairs of
models, i.e., Ch05mD and Ch05mDH, Ch05wD and Ch05wDH, Ng14D
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and Ng14DH, without and with total tree height in the AGB predictors.
Surprisingly, the most recent pantropical model including the stress
variable (Ch14DE) provided less biased AGB estimates than the model
including tree height in the AGB predictors (Ch14DH). Finally, similar
but accentuated results were retrieved when only considering large
trees (Figs. 2 and S2), specifically absolute bias and RMSE increased
strongly when only considering large trees (Table S2).

4. Discussion

In this study, using the dataset assembled in the PREREDD+

project, we tested whether central African forests are really different
from other tropical forests with respect to biomass allometry, and fur-
ther examined the regional variation in tropical tree allometry across
the Congo basin forests that are of extreme importance for forest
management and carbon storage.

4.1. A moist forest allometry for most Congo basin forests

Pantropical models should be evaluated prior to their use, since
huge deviations were locally reported, e.g. in central Amazon
(Chambers et al., 2001) for the earlier pantropical equations developed

Table 4
Comparison of the regional model performance across sites. RMSE (in kg) and mean relative bias (in brackets, in %, and significance according to t-test) were
computed for each site separately on back-transformed predictions for the 16 regional models (Table 3). Significance levels correspond to : *** for P < 0.001, ** for
P < 0.01, * for P < 0.05, and ns for not significant. Unbiased AGB estimates at site-level are shown in bold. Number of trees and mean AGB are given for each site.
Sites are ordered from West to East.

Model RMSE (bias and significance)

1. EqG 2. Gab 3. Cam 4. CAR 5. Con 6. DRC
(n= 109,
AGB=4086 kg)

(n=178,
AGB=5543 kg)

(n=132,
AGB=6124 kg)

(n=143,
AGB=4163 kg)

(n= 141,
AGB=5707 kg)

(n= 142,
AGB=5511 kg)

(1) Fitting the general models of Chave et al. (2014) and including WSG, D and H in the AGB predictors
1 8260 (39.2***) 6805 (19***) 3552 (6.3 ns) 3506 (4.2 ns) 3019 (−4.3 ns) 6950 (−24.8***)
2 8904 (42.4***) 7165 (21.8***) 3385 (8.7 ns) 3660 (6.2*) 2908 (−2.2 ns) 6732 (−23.6***)
3 9411 (39.7***) 6587 (17.1***) 4089 (2.7 ns) 4338 (7.8*) 2873 (−1.8 ns) 4890 (−12.7***)
4 8325 (39.3***) 6887 (19***) 3612 (6.1 ns) 3517 (4ns) 3002 (−4.4 ns) 6959 (−25***)
5 8273 (39.1***) 6837 (18.9***) 3589 (6.2 ns) 3508 (4.1 ns) 3016 (−4.4 ns) 6961 (−25***)
6 8912 (42.4***) 7172 (21.8***) 3387 (8.7 ns) 3662 (6.2*) 2907 (−2.2 ns) 6731 (−23.6***)
7 7513 (33.3***) 6359 (13.1*) 4331 (0.2 ns) 3484 (0.8 ns) 3206 (−7.8*) 6742 (−24.5***)

(2) Testing the importance of H, i.e.,comparing the performance of models with and without H
8 10,540 (40.1***) 6329 (14.8**) 5054 (−0.7 ns) 5581 (11.7*) 4249 (0.7 ns) 4762 (2.7 ns)
9 3978 (4.9 ns) 6842 (−13.7***) 8900 (−25.7***) 4446 (−15.5***) 6923 (−25***) 6444 (−24.3***)
10 9800 (38.7***) 5647 (13.9**) 4663 (−0.7 ns) 5357 (12.5*) 4029 (0.4 ns) 4664 (4.1 ns)
11 3661 (2ns) 7015 (−15.6***) 8806 (−26.5***) 4592 (−15.2***) 7462 (−26.4***) 6606 (−23.3***)
12 8057 (36.2***) 5832 (12*) 5910 (−2.9 ns) 4428 (9.5*) 2596 (−2.7 ns) 4358 (0ns)

(3) Substituting H by the environmental stress of the site
13 8183 (32***) 5770 (9.5*) 5573 (−1.9 ns) 4734 (10*) 2806 (−0.8 ns) 4424 (0.4 ns)

(4) Including crown dimensions (CR= crown radius) in the AGB predictors
14 8974 (41.5***) 5917 (13.3*) 3683 (5.1 ns) 4342 (8.8*) 2915 (−3.6 ns) 4489 (−11***)
15 8596 (40.6***) 5832 (12.1*) 3657 (5.1 ns) 4143 (7.7*) 2794 (−4.9 ns) 4723 (−12.9***)

(5) Substituting H by CR, i.e., comparing the performance of models with H and with CR
16 10,030 (41.6***) 5684 (11.1*) 4610 (1.2 ns) 5602 (12.7**) 4339 (−0.9 ns) 4445 (4.7 ns)

Table 5
Comparison of the local model performance across sites (pairewise validation). RMSE (in kg) and mean relative bias (in brackets, in %, and significance according to
t-test) were computed for each site separately on back-transformed predictions for two local site-specific models (3 and 12, Table 3). Significance levels correspond to
: *** for P < 0.001, ** for P < 0.01, * for P < 0.05, and ns for not significant. Unbiased AGB estimates at site-level are shown in bold. Number of trees and mean
AGB are given for each site. Sites are ordered from West to East.

RMSE (bias and significance)

1. EqG 2. Gab 3. Cam 4. CAR 5. Con 6. DRC
(n= 109,
AGB=4086)

(n=178,
AGB=5543 kg)

(n=132,
AGB=6124 kg)

(n=143,
AGB=4163 kg)

(n= 141,
AGB=5707 kg)

(n= 142,
AGB=5511 kg)

(1) Including WSG, D and H in the predictors of tree AGB
Model 3 calibrated

in
1. EqG – 6669 (−9.9*) 7222 (−20***) 4690 (−20.6***) 7418 (−27.5***) 9453 (−42.5***)
2. Gab 6775 (27.5***) – 4878 (−5.2 ns) 3561 (0.1 ns) 3282 (−10***) 5872 (−19.1***)
3. Cam 8196 (34.9***) 6622 (15.5**) – 3518 (0.7 ns) 3115 (−7*) 7111 (−27.5***)
4. CAR 7953 (33.6***) 6324 (12.8*) 4339 (−0.4 ns) – 2873 (−7*) 6147 (−21.5***)
5. Cgo 11,890 (50.4***) 8104 (25.5***) 4077 (9.2 ns) 5586 (14.8***) – 4338 (−6.1 ns)
6. DRC 16,797 (74.9***) 12,149 (45.7***) 5459 (25.8**) 8370 (30.5***) 8877 (21.6***) –

(2) Including WSG and D in the predictors of tree AGB
Model 12

calibrated in
1. EqG – 7799 (−15.4***) 10,098 (−26.5***) 5415 (−16.6***) 10,227 (−27.4***) 7547 (−25.8***)
2. Gab 8821 (32.6***) – 5176 (−5.3 ns) 4742 (7.4 ns) 3285 (−4.1 ns) 4472 (−1 ns)
3. Cam 12,207 (54.3***) 6972 (26.7***) – 7196 (25.3***) 6451 (11.7**) 5886 (16.9**)
4. CAR 6009 (29.7***) 6027 (6.8 ns) 7264 (−7.6 ns) – 4759 (−8.2*) 4746 (−6.2 ns)
5. Cgo 9614 (44.4***) 6631 (18.5***) 5755 (2.3 ns) 5154 (14.8***) – 4533 (4.6 ns)
6. DRC 8270 (46.9***) 6995 (20.7***) 6878 (4.2 ns) 4754 (16.1***) 3951 (3.4 ns) –
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by Brown et al. (1989), and in Indonesia (Basuki et al., 2009), in Co-
lombia (Alvarez et al., 2012), in southwestern Amazon (Goodman et al.,
2013) and in Gabon (Ngomanda et al., 2014) for the pantropical
equations developed by Chave et al. (2005). The most recent pan-
tropical equations (Chave et al., 2014) have not previously been eval-
uated in central Africa. Here, we found that the pantropical equations
developed for moist forests (Chave et al., 2005) provided biased but
reasonable estimates of tree AGB in most sites, except in the wettest
site, i.e., coastal evergreen forests in Equatorial Guinea, which showed a
wet forest allometry, and where pantropical equations developed for
wet forests (Chave et al., 2005) provided better estimates. In the
evergreen forests further inland, sampled in Gabon, trees tended to
present an intermediate allometry between wet and moist forests.
However, using the pantropical equations for moist forests (Chave
et al., 2005) seemed preferable, and even better than the most recent
pantropical equations including H in the AGB predictors (Chave et al.,
2014). The good performance of the most recent pantropical equations
including E as a proxy of the H-D relationship (Chave et al., 2014) has
to be noted, and the use of this model can be recommended in the
Congo basin forests.

Despite the significant deviation already observed in Gabon by
Ngomanda et al. (2014) and here in Equatorial Guinea, most Congo
basin forests showed a moist forest allometry, as previously reported in
southeastern Cameroon (Fayolle et al., 2013) and in Yangambi, DRC
(Ebuy et al., 2011). When considering the climatic thresholds used by
Chave et al. (2005), most of the Congo basin forests can be considered
as moist forests, i.e., forests with a marked dry season, from one to
4months, and sometimes with a semi-deciduous canopy, and corre-
sponding to 1500–3500mm per year in rainfall (Chave et al., 2005). In
contrast, high-rainfall lowland wet forests, with rainfall greater than
3500mm per year and no seasonality (Chave et al., 2005), are restricted
to a small area along the gulf of Guinea, and montane cloud forests are
restricted to small areas along the Volcanic Line of Mount Cameroon
and along the Albertine rift. In this study, montane forests were not
sampled, and have never been destructively sampled for biomass and
allometry in tropical Africa (Loubota Panzou et al., 2016). The

relatively dry and seasonal climate across the Congo basin forests has
been recognized for long and invoked to explain the low species rich-
ness in comparison to the Neotropics (Parmentier et al., 2007). How-
ever, the huge cloud cover over coastal forests and most Gabonese
forests explains forest evergreenness and the tendency for a wet forest
allometry, though rainfall is far below the accepted thresholds for wet
forests (3500mm). The link between evergreen- or deciduous-ness and
tree allometry is, however, not straightforward.

Since specific and common species were sampled in each site, it
might be worth exploring between-site variation for shared species in
order to disentangle floristic and environmental control on tree allo-
metry (Fayolle et al., 2016). Specific equations could also be developed
for the species/genera well represented in the combined dataset, as
done for most commercial species/genera in Dipterocarp forests of East
Kalimantan, Indonesia (Basuki et al., 2009). Specifically, the allometry
of Gilbertiodendron dewevrei, that forms almost pure stands, could be
further examined, and compared to the results of Umunay et al. (2017)
obtained with a very different approach (randomized branch sampling).
However, it should be kept in mind that developing species- or genus-
specific biomass allometries across the tropics will not be possible, and
that multi-species allometries are needed for forest biomass and carbon
monitoring.

Interestingly, the pantropical equation of Chave et al. (2014) sub-
stituting height-diameter allometry by the environmental stress of the
site provided relatively reliable AGB estimates, for all sites but the one
in Equatorial Guinea that, again, appeared divergent. Even on the re-
duced environmental gradient covered here, i.e., sampling did not in-
clude any dry forests or woodlands, the environmental stress variable
seemed to satisfyingly determine height-diameter allometry, in contrast
with earlier results in Cameroon (Fayolle et al., 2016).

4.2. A regional allometry for the Congo basin forests

Using this unique dataset as a calibration dataset, we first fitted the
general allometric model form retained by Chave et al. (2014):

Fig. 2. Mean value and significance of the relative bias (in %) in AGB predictions at the tree level from the pantropical equations developed by Chave et al. (2005) for
moist forests (including in the predictors, wood specific gravity and tree diameter, Ch05mD, and additionally total tree height, Ch05mDH) and wet forests (including
wood specific gravity and tree diameter, Ch05wD, and additionally height, Ch05wDH), and by Chave et al. (2014) for all tropical forests (including wood specific
gravity, tree diameter, and height, Ch14DH, or the environmental stress variable, Ch14DE), and from the local equations developed by Ngomanda et al. (2014) in
Gabon (including wood specific gravity and tree diameter, Ng14D, and additionally height, Ng14DH). Prediction tests were performed at the site level for all sampled
trees (in grey) and separately for large trees (diameter > 70 cm, in black). Significance levels correspond to : *** for P < 0.001, ** for P < 0.01, * for P < 0.05,
and ns for not significant. Sites are ordered from West to East.
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= × × ×AGB 0.055 (WSG D H) (regional model 1)est
2 0.989

We found that the model, relatively simple in its form, provided a re-
latively good fit to the data, and more importantly, we found that the
estimated coefficients (including the correction factor) for the Congo
basin forests were quite close to the pantropical coefficients. This result
is a strong argument for a universal approach to estimate biomass and
carbon stocks as highlighted by Vieilledent et al. (2012) in Madagascar
and in line with the development of pantropical allometric equations
(Brown et al., 1989; Chave et al., 2014, 2005). The strong convergence
in tropical tree allometry demonstrated in Madagascar (Vieilledent
et al., 2012), in Indonesia (Rutishauser et al., 2013), in Cameroon
(Fayolle et al., 2013) can be interpreted as strong (and similar) con-
straints on the architecture of self-supporting plants, as discussed in
Chave et al. (2014). Because uncertainty computation is key in the IPCC
guidelines, the variance-covariance matrix of the coefficients needed to
compute exact confidence intervals around predictions are given for the
retained models (Table S3).

Though estimated coefficients were close to 1 for wood specific
gravity and close to 2 for tree diameter, including specific scaling
coefficients for each predictor significantly improved the model, ar-
guing for a more complex, or flexible, allometry than the simple power-
law model proposed by Chave et al. (2014). The biological relevance of
complex allometries have been questioned in detail (Sileshi, 2014)
though it is generally recognized that complex allometric models out-
perform simple power models (Picard et al., 2015). For future estima-
tion and monitoring of biomass/carbon stocks in the Congo basin for-
ests, we recommend the following regional model:

= × × ×AGB 0.125 WSG D H (regional model 3)est
1.079 2.210 0.506

Including total tree height in the predictors only slightly improved the
AGB estimates, in contrast to common sense and previous results
(Feldpausch et al., 2012; Vieilledent et al., 2012). More importantly,
between-site variation remained in the model residuals, in contrast to
our expectation that total tree height captures most between-site var-
iation as proposed by Ketterings et al. (2001) and demonstrated by
Chave et al. (2014, 2005) across the tropics. Since tree height is almost
never available in large-scale forest inventory data, and extremely
difficult to measure in tropical forests (Larjavaara and Muller-Landau,
2013), the following regional model only including tree diameter and
wood specific gravity in the AGB predictors is also recommended:

= + × + ×

+ × − ×

AGB exp[0.046 1.156 log(WSG) 1.123 log(D)

0.436 (log(D)) 0.045 (log(D)) ] (regional model 12)
est

2 3

Examining the performance of general models (either pantropical or
regional) versus local site-specific models, we found only little ad-
vantage of using local models, except in Equatorial Guinea, were tree
allometry deviated from the regional pattern. Inconsistent sites were
also reported by Chave et al. (2014), but the relatively old data could
not allow tracing back the inconsistencies.

Though the RMSEs were comparable, our regional models showed
smaller bias, and should therefore be preferred to pantropical models.
With almost an equal number of trees in all diameter size classes and a
good representation of size and wood specific gravity in all sites, our
sampling is appropriate for establishing allometric equations (Picard
et al., 2012), but not representative of forest stands (Goodman et al.,
2013). An interesting perspective would be to examine error propaga-
tion at plot level, using inventory data (Ploton et al., 2016) or typical
diameter distribution (Chave et al., 2014). Indeed, pantropical models
provided biased estimates at the tree level though the goal of these
models is to make predictions on thousands or millions of trees across
large landscapes, so that the errors detected at the site level based on a
sample of 100 trees cancelled out based on much larger samples.

4.3. A low contribution of tree height and crown dimensions

Here, for the Congo basin forests, we found that tree height and
crown dimensions only had a minor contribution on tree AGB variation,
confirming the tremendous importance of tree diameter and wood
specific gravity (Chave et al., 2005), while elsewhere, using mean wood
specific gravity at the site/plot level has been shown to be acceptable
(e.g. Molto et al., 2013 in French Guiana). When wood specific gravity
values are missing for some tree species, default value of 0.58 g cm−3

with an error of 10% is often used (Chave et al., 2004). Here a mean of
0.582 g cm−3 was reported across species. Despite the efforts made to
sample species with contrasted wood specific gravity in each site, the
absence of extremely dense-wooded species, e.g. sinkers, can be noted.
However, the new information now available for tropical tree species of
the Congo basin are valuable, with this new data for 55 African species
and including yet unsampled species in the global database (Chave
et al., 2009; Zanne et al., 2009), such as Duboscia macrocarpa.

Including tree height in the predictors did not necessarily improve
AGB estimates, as already reported in southwestern Amazonia, where
greater crown mass has been demonstrated to compensate for shorter
tree stature (Goodman et al., 2013). In contrast to our expectations, tree
height did not capture most between-site variation and crown dimen-
sions were not so important, even for the largest trees. We, however,
detected strong and significant between-site variation in both height-
diameter and crown-diameter allometries across the Congo basin, in
contrast with Antin et al. (2013) who reported little variation in crown
allometries. Specifically, in the transition forests of DRC, trees tended to
be shorter in height as already reported by Kearsley et al. (2013) in
Yangambi, but to develop extremely large crowns, and thus reaching
huge AGB though shorter in height, consistent with the moist forest
allometry reported by Ebuy et al. (2011). This compensation between
tree height and crown size has been well described by Goodman et al.
(2013) in southwestern Amazonia. Here, we found that crown radius
was only a minor determinant of AGB variation (but significant), and
more surprisingly, between-site variation remained when tree height
and crown radius were both included in the AGB predictors. Crown
radius moreover appeared less effective (0.87%) than total tree height
(2.05%) to estimate tree AGB in the Congo basin forests, while in
southwestern Amazonia crown radius explained much more variation
(10.5%) in AGB than total tree height (6.0%), on a rather limited da-
taset of 51 trees. The moderate importance of crown for AGB estimation
demonstrated here is perhaps related to the lower biomass allocation to
the crown (32% ± 1.3% [mean ± SE] in Equatorial Guinea,
33% ± 1.1% in Gabon, 35% ± 1.5% in Cameroon, 27.5% ± 0.9 in
CAR, 34.2% ± 1.4% in Congo, and 36.9% ± 1.6% in DRC), much
more comparable to the 35.6% reported by Ploton et al. (2016) in
comparison to the nearly half of the biomass (44% ± 2%) reported by
Goodman et al. (2013). Similar to Ploton et al. (2016), we also retrieved
an increase in biomass allocation to crown with tree size with a mean of
27.3% for trees< 30 cm in diameter and up to 46.3% for trees
≥120 cm, but the importance of crown characteristics (dimensions or
mass) for estimating tree AGB needs further investigations. The diffi-
culties associated with collecting crown dimension data in the field has
also to be kept in mind, though emerging techniques, such as high-
resolution remote sensing, offer new possibilities to derive crown
measurements for emergent and canopy trees, for which biomass esti-
mates and uncertainties are the largest.

5. Conclusion

The choice of the allometric model is still a critical step in the es-
timation of biomass and carbon stocks contained in tropical forests.
Here, we validated the use of pantropical equations in the Congo basin,
specifically the model including the E variable as a proxy of the H-D
relationship, and developed regional allometric equations for the low-
land terra firme forests. Except in Equatorial Guinea were local models
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should be preferred, we recommend to use our regional models 3 and
12, and otherwise pantropical models, for the estimation and mon-
itoring of biomass/carbon stocks contained in the second largest con-
tiguous block of tropical forests worldwide. The results reported here
have strong practical implications for accurate forest biomass/carbon
monitoring and the successful implementation of climate change miti-
gation strategies, such as the REDD+ .
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