

Use of DNA-fingerprints for timber tracking

Bernd Degena, Céline Jolivetb, Aki Höltkenb,c

- a) vTI- Institut für Forstgenetik, Grosshansdorf, Germany
- b) University of Hamburg, Germany
- c) Plant Genetic Diagnostics GmBH

Content

1. Introduction

2. Projects and results

- Controlling the country of origin for mahogany (Swietenia macrophylla)
- DNA-Barcoding to distinguish tree species in the family meliaceae
- Timber tracking of Sapelli (*Entandrophragma cylindricum*) and Iroko (*Milicia excelsa*) on the level of a forest concession in Cameroon

1. Introduction - question

Need for control on different scales:

- A) Logging of protected species (CITES) => control of species identity
- B) Logging in countries with ban of exports or limitations in timber export volume => large scale control of geographic origin (countries)
- C) Logging in protected areas or outside of certified forests => small scale control of geographic origin (landscape, forest concessions)

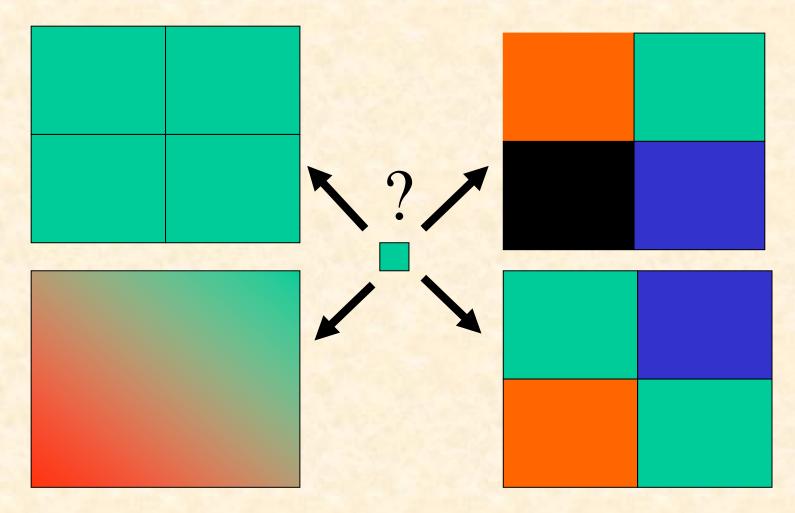
Requirements for control of timber origin:

Control of traits that cannot be manipulated

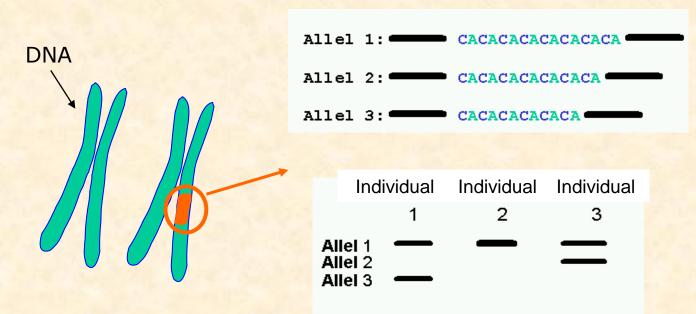
Method also applicable for processed timber

Spatial resolution of the control high enough

Rapid control


Low costs

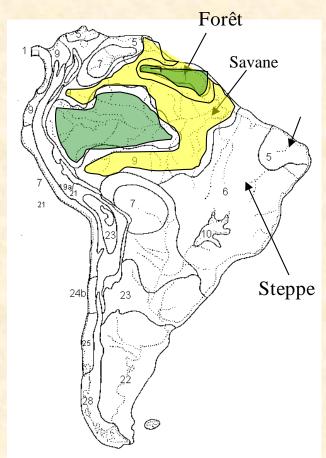
Spatial pattern is the basis for any control!



Genetic fingerprinting

A microsatellite consists of a specific sequence of DNA bases or nucleotides which contains mono, di, tri, or tetra tandem repeats

Causes for spatial genetic pattern of tree populations

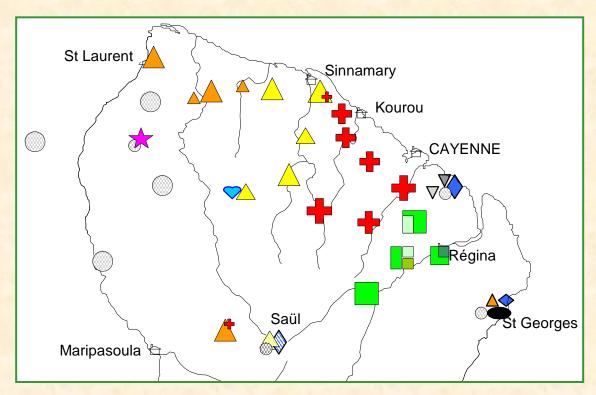

Extinction and recolonisation (glacial periods, natural desasters)

Spatial limited pollen and seed dispersal

Genetic selection along gradients

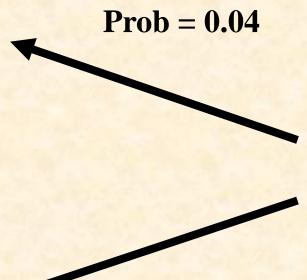
Artificial regeneration from different seed sources

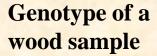
The Amazon during the last glacial period

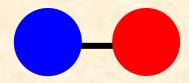


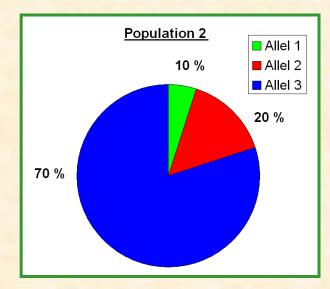
Spatial genetic pattern at chloroplast gene marker of the tropical tree species Vouacapoua america in French Guiana

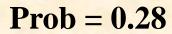
Dutech et al. (2003) Evolution 57: 2753-2764.


General approach


- 1. Sampling of individuals in the declared location of origin and in other alternative places => good sampling design
- 2. Sampling of the traded wood => good sampling design
- Genotyping (nSSRs, SNPs, Sequence Variation) => best gene markers
- 4. Statistical analysis => most reliable method







Partners

Bernd Degen, vTI, Germany (co-ordination)

Stephen Cavers, CEH, UK

Carlos Navarro, CATIE, Costa Rica

Sheila Ward, University Puerto Rico, USA

Alexandre Sebbenn, Sao Paulo Forest Institute, Brazil

Maristerra Lemmes, Inpa Manaus, Brazil

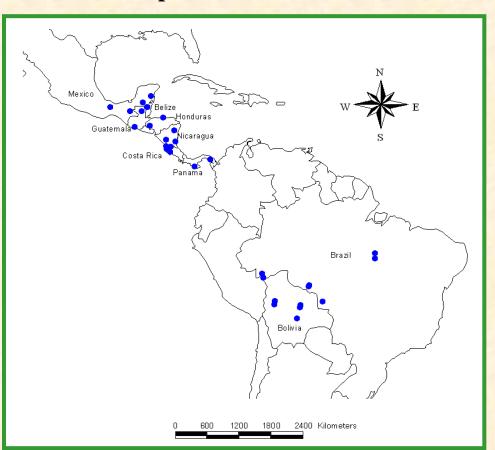
Rogerio Gribel, Botanical Garden Rio de Janeiro, Brazil

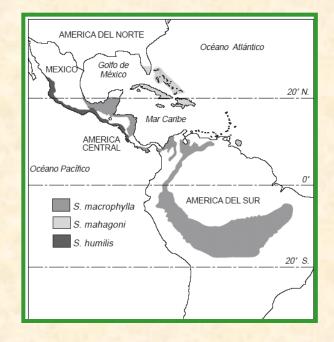
Budget

vTI

EU-INCO

CNPq (Brazil)





Sampling

33 populations with 24-400 individuals

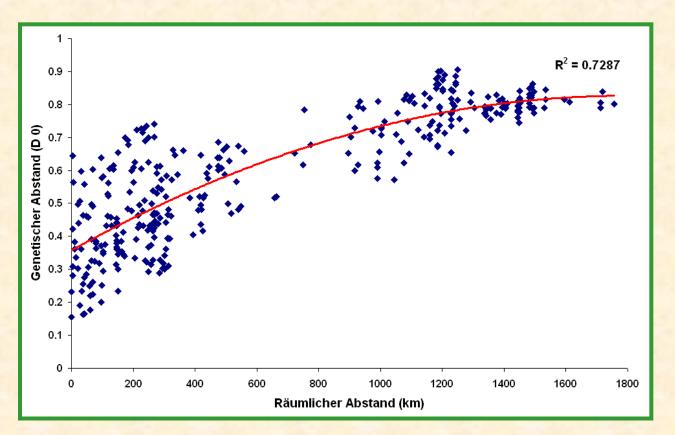
2038 trees sampled

Genetic variation

7 nuclear microsatellites

More than 200 alleles identified

In each population between 44 – 106 alleles

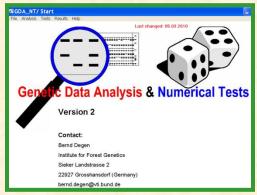


Genetic differentiation

Correlation between spatial and genetic distances

Strong genetic differences among populations (delta = 0,53; F_{ST} = 0,20; $F_{ST_Hedrick}$ = 0,66)

Practical test with 20 mahogany wood samples of the timber trader Nagel + 11 wood samples sent by Alexandre Sebbenn



D 1 11		0.4		22		40		2.4		40		20		F.4
Proben Nr	sm	01	sm	22	sm	40	sm	31	sm	46	sm	32	sm	51
TN1	274	284	136	138	130	130	85	99	-1	-1	150	156	148	156
TN2	274	284	136	138	130	130	85	99	-1	-1	150	156	148	156
TN3	-1	-1	130	132	-1	-1	-1	-1	-1	-1	158	162	-1	-1
TN4	-1	-1	132	136	130	138	99	101	-1	-1	150	154	146	148
TN5	274	284	136	138	130	130	85	99	-1	-1	150	156	148	156
TN6	284	284	132	132	130	130	99	101	-1	-1	150	156	148	156
TN7	284	286	132	140	-1	-1	-1	-1	-1	-1	150	154	146	148
TN8	-1	-1	132	136	-1	-1	-1	-1	-1	-1	-1	-1	146	148
TN9	-1	-1	132	136	130	130	-1	-1	-1	-1	150	156	-1	-1
TN10	274	274	132	132	128	130	83	83	-1	-1	150	154	138	148
TN11	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	150	152	146	148
TN12	262	274	132	132	128	130	83	101	-1	-1	150	152	146	148
TN13	-1	-1	132	136	130	130	83	83	-1	-1	-1	-1	146	148
TN14	262	262	-1	-1	-1	-1	83	83	-1	-1	150	152	146	148
TN15	284	286	132	140	128	138	97	103	-1	-1	150	154	146	148
TN16	284	286	132	140	128	138	97	103	-1	-1	150	154	146	148
TN17	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	150	152	146	148
TN18	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	150	152	146	148
TN19	-1	-1	-1	-1	-1	-1	83	83	-1	-1	150	152	146	148
TN20	-1	-1	132	132	-1		-1	-1	-1	-1	150	152		
TNZU	-1	-1	132	132	-1	-1	-1	-1	-1	-1	130	132	146	148

Genotypes of the 20 wood samples from the company Theodor Nagel

perna. de gen@vti. buna. de							
Assignment / exclusion of groups							
Method for assignment /exclusion							
 Bayesian method (Rannala and Mountain 1997) 							
C Frequency method (Paetkau et al. 1995)							
Minimal frequency of missing alleles							
Number of simulated groups							
Method for generation of genotypes in simulations							
• with allele frequencies of ref pops							
© recombination of multilocus haplotypes of ref pops							
C recombination of single locus genotypes of the ref pops							
C recombination of alleles of ref pops							
Close Run Progress Simulations 5							

Name Group	Assigned to Pop	Score	Probability of exclusion
Nagel_ma	GU_m_Peten	1.000	0.7730
Sebbenn	BO_m_La_Conta	0.987	0.9030

```
### List of Reference Populations ###
1. BO m Bolpebra
                         / N = 92
                         / N = 103
2. BO m Jorge Cruz
3. BO m La Conta
                         / N= 59
4. BO m San Borja
                         / N = 65
5. BO m Sapecho
                         / N = 52
                         / N = 51
6. BO m Yotau
7. CR M La Cruz
                         / N = 50
                         / N = 51
8. CO m Los Chiles
9. CR M Pocosol
                         / N = 49
10. CO M Sardinal
                         / N = 52
11. BO m La Conta 1
                         / N = 80
12. BO m La Conta 2
                         / N = 66
13. CR h Guanacaste
                         / N = 34
14. GU h Esquintla
                         / N = 45
15. GU m Peten
                         / N= 56
                         / N = 57
16. HO m Colon
17. ME m Veracruz
                         / N = 98
18. ME m Chiapas
                         / N = 52
                         / N = 59
19. ME m Champeche
20. ME m Quintana Roo
                         / N = 50
                         / N = 53
21. NI m Central
22. NI m X
                         / N = 53
                         / N = 26
23. PA m Herrera
24. PA m Darien
                         / N = 37
                         / N = 42
25. BE m East Botes
26. BE m Punta Gorda
                         / N = 49
27. BR_m_Agua_Azul
                         / N = 31
28. BR m Cach A
                         / N = 32
29. BR m Pontes Lacerda
                         / N = 24
30. BR m Chico Mendes
                         / N = 34
31. BR m Cach E
                         / N = 24
32. BR m Pimenta Bueno
                         / N = 24
33. BR m Marajoara
                         / N = 400
```


3. Outlook

- Create a network of involved institutions, ongoing projects => go for large international projects (ITTO)
- Further development and standardisation of methods (sample strategies, DNA-extraction from wood, gene markers (SNPs), additional isotopes)
- Merging efforts for systematic sampling and inventories with genetic and isotopic fingerprints => creation of reference data
- Setup and maintenance of free accessible data banks with reference data
- Technology transfer to private sector
- Setup of co-ordination office at Bioversity International